Gas rushing from the hole ignites with a whoomp that staggers her. “My job’s the worst, because usually you catch on fire,” she says, smiling. In the gathering twilight she and her team ignite one bubble after another.
The flames confirm that the bubbles are methane, the main component of natural gas. By counting and measuring them, Walter Anthony is trying to gauge how much methane is rising from Goldstream Lake—and from the millions of similar lakes that now occupy nearly a third of the Arctic region. The Arctic has warmed much faster than the rest of the planet in recent decades, and as the permafrost has melted, old lakes have grown and new ones have formed. Methane bubbles from their muddy depths in a way that is hard to quantify—until the first clear ice of fall captures a snapshot of the emissions from an entire lake.
Sometimes as Walter Anthony walks that ice, in Alaska, Greenland, or Siberia, a stamp of her boot is enough to release an audible sigh. Some lakes, she says, have “hot spots” where the methane bubbling is so strong that ice never forms, leaving open holes big enough to spot from an airplane. “It could be 10 or 30 liters of methane per day from one little hole, and it does that all year,” she says. “And then you realize there are hundreds of spots like that and millions of lakes.” By venting methane into the atmosphere, the lakes are amplifying the global warming that created them: Methane is a potent greenhouse gas. Carbon dioxide is the main one, because the atmosphere holds 200 times as much of it. But a given amount of methane traps at least 25 times as much heat—unless you burn it first. Then it enters the atmosphere as CO₂.
That’s the other side of this Jekyll-and-Hyde story: A lot of methane is being burned these days. In the past decade the technology called hydraulic fracturing, “fracking” for short, has enabled drillers in the United States to extract natural gas from deeply buried shales they couldn’t tap before. Natural gas supplies have surged; prices have plummeted. Fracking is now spreading around the world, and it’s controversial. The gas boom has degraded landscapes and polluted water. But it has also had environmental benefits. Natural gas burns much cleaner than coal. In part because American power plants have been switching from coal to cheap gas, U.S. emissions of CO₂ from fossil fuels fell last year, even as the world set another record.
The catch is, methane emissions are rising. What’s coming out of Arctic lakes is troubling, Walter Anthony says, because some of it seems to be coming not from bottom mud but from deeper geologic reservoirs that had hitherto been securely capped by permafrost—and that contain hundreds of times more methane than is in the atmosphere now. Still, most methane emissions today come from lower latitudes, and most are related more directly to human activities. A growing amount seems to be leaking, for instance, from gas wells and pipelines. Just how warm Earth gets this century will hinge in part on how we balance the good and bad of methane—on how much of it we capture and burn, and how much we inadvertently let loose.
By Marianne Lavelle, National Geographic | Read more:
Photograph by Mark Thiessen