“So, how would you kill mosquitoes with a laser?”
Nathan Myhrvold asked us. Lowell Wood, Rod Hyde, and I smiled. The three of us were meeting with Myhrvold in the fall of 2006, in an office at Intellectual Ventures Management, a company in Bellevue, Wash., that he founded in 2000 to create and invest in inventions. We smiled because we had just spent the afternoon arguing over that very question, scribbling ideas and calculations on a whiteboard, and had come up with what we thought was a pretty good answer: a “photonic fence” in the form of a row of vertical posts that would use optical sensors and lasers to spot, identify, and zap bad bugs on the wing.
The idea of building a high-tech defense against disease-carrying pests had come up in discussions that Myhrvold and Wood had been having with Bill Gates, who was Myhrvold’s boss when he was chief technology officer at Microsoft in the 1990s. Through the Bill and Melinda Gates Foundation, Gates has been trying to improve living conditions in some of the world’s poorest countries and in particular to come up with ways to eradicate malaria, a mosquito-borne disease that sickens about a quarter billion people a year and kills nearly a million annually, including roughly 2000 children a day (see Web-only sidebar, “New Techniques Against a Tenacious Disease”).
Wood, a veteran of advanced weapons development at Lawrence Livermore National Laboratory, in California, and one of the scientists behind the Strategic Defense Initiative (otherwise known as “Star Wars”), had suggested trying a similarly high-tech approach against malarial mosquitoes—to take advantage of inexpensive, low-power sensors and computers to somehow track individual mosquitoes and shoot them out of the air. If it could be done cheaply enough, this might offer the first really new way in many years to combat malaria, as well as other diseases transmitted by flying insects, such as West Nile virus and dengue fever.
Hyde and I had worked with Wood at Livermore. Hyde now manages Intellectual Ventures’ stable of staff and consulting inventors, and he assigned me the challenge of making the idea work—or showing why it couldn’t.
Three years later, my colleagues and I at Intellectual Ventures have now worked out many of the trickiest aspects of the photonic fence and have constructed prototypes that can indeed identify mosquitoes from many meters away, track the bugs in flight, and hit them with debilitating blasts of laser fire. And we did it without a multimillion-dollar grant from some national Department of Entomological Defense. Nearly everything we used can be purchased from standard electronics retailers or online auction sites.
In fact, for a few thousand dollars, a reasonably skilled engineer (such as a typical IEEE Spectrum reader) could probably assemble a version of our fence to shield backyard barbecue parties from voracious mosquitoes. We therefore present the following how-to guide to building a photonic bug killer, in five parts: selecting an appropriate weapon, spotting the bugs, distinguishing friends from foes, getting a pest in your sights, and finally shooting to kill.
Nathan Myhrvold asked us. Lowell Wood, Rod Hyde, and I smiled. The three of us were meeting with Myhrvold in the fall of 2006, in an office at Intellectual Ventures Management, a company in Bellevue, Wash., that he founded in 2000 to create and invest in inventions. We smiled because we had just spent the afternoon arguing over that very question, scribbling ideas and calculations on a whiteboard, and had come up with what we thought was a pretty good answer: a “photonic fence” in the form of a row of vertical posts that would use optical sensors and lasers to spot, identify, and zap bad bugs on the wing.
The idea of building a high-tech defense against disease-carrying pests had come up in discussions that Myhrvold and Wood had been having with Bill Gates, who was Myhrvold’s boss when he was chief technology officer at Microsoft in the 1990s. Through the Bill and Melinda Gates Foundation, Gates has been trying to improve living conditions in some of the world’s poorest countries and in particular to come up with ways to eradicate malaria, a mosquito-borne disease that sickens about a quarter billion people a year and kills nearly a million annually, including roughly 2000 children a day (see Web-only sidebar, “New Techniques Against a Tenacious Disease”).
Wood, a veteran of advanced weapons development at Lawrence Livermore National Laboratory, in California, and one of the scientists behind the Strategic Defense Initiative (otherwise known as “Star Wars”), had suggested trying a similarly high-tech approach against malarial mosquitoes—to take advantage of inexpensive, low-power sensors and computers to somehow track individual mosquitoes and shoot them out of the air. If it could be done cheaply enough, this might offer the first really new way in many years to combat malaria, as well as other diseases transmitted by flying insects, such as West Nile virus and dengue fever.
Hyde and I had worked with Wood at Livermore. Hyde now manages Intellectual Ventures’ stable of staff and consulting inventors, and he assigned me the challenge of making the idea work—or showing why it couldn’t.
Three years later, my colleagues and I at Intellectual Ventures have now worked out many of the trickiest aspects of the photonic fence and have constructed prototypes that can indeed identify mosquitoes from many meters away, track the bugs in flight, and hit them with debilitating blasts of laser fire. And we did it without a multimillion-dollar grant from some national Department of Entomological Defense. Nearly everything we used can be purchased from standard electronics retailers or online auction sites.
In fact, for a few thousand dollars, a reasonably skilled engineer (such as a typical IEEE Spectrum reader) could probably assemble a version of our fence to shield backyard barbecue parties from voracious mosquitoes. We therefore present the following how-to guide to building a photonic bug killer, in five parts: selecting an appropriate weapon, spotting the bugs, distinguishing friends from foes, getting a pest in your sights, and finally shooting to kill.
by Jordin Kare, IEEE Spectrum | Read more:
Image: Jude Buffum