Sunday, September 6, 2015

Don’t Worry, Smart Machines Will Take Us With Them

Why human intelligence and AI will co-evolve.

When it comes to artificial intelligence, we may all be suffering from the fallacy of availability: thinking that creating intelligence is much easier than it is, because we see examples all around us. In a recent poll, machine intelligence experts predicted that computers would gain human-level ability around the year 2050, and superhuman ability less than 30 years after.1 But, like a tribe on a tropical island littered with World War II debris imagining that the manufacture of aluminum propellers or steel casings would be within their power, our confidence is probably inflated.

AI can be thought of as a search problem over an effectively infinite, high-dimensional landscape of possible programs. Nature solved this search problem by brute force, effectively performing a huge computation involving trillions of evolving agents of varying information processing capability in a complex environment (the Earth). It took billions of years to go from the first tiny DNA replicators toHomo Sapiens. What evolution accomplished required tremendous resources. While silicon-based technologies are increasingly capable of simulating a mammalian or even human brain, we have little idea of how to find the tiny subset of all possible programs running on this hardware that would exhibit intelligent behavior.

But there is hope. By 2050, there will be another rapidly evolving and advancing intelligence besides that of machines: our own. The cost to sequence a human genome has fallen below $1,000, and powerful methods have been developed to unravel the genetic architecture of complex traits such as human cognitive ability. Technologies already exist which allow genomic selection of embryos during in vitro fertilization—an embryo’s DNA can be sequenced from a single extracted cell. Recent advances such as CRISPR allow highly targeted editing of genomes, and will eventually find their uses in human reproduction.

The potential for improved human intelligence is enormous. Cognitive ability is influenced by thousands of genetic loci, each of small effect. If all were simultaneously improved, it would be possible to achieve, very roughly, about 100 standard deviations of improvement, corresponding to an IQ of over 1,000. We can’t imagine what capabilities this level of intelligence represents, but we can be sure it is far beyond our own. Cognitive engineering, via direct edits to embryonic human DNA, will eventually produce individuals who are well beyond all historical figures in cognitive ability. By 2050, this process will likely have begun.

These two threads—smarter people and smarter machines—will inevitably intersect. Just as machines will be much smarter in 2050, we can expect that the humans who design, build, and program them will also be smarter. Naively, one would expect the rate of advance of machine intelligence to outstrip that of biological intelligence. Tinkering with a machine seems easier than modifying a living species, one generation at a time. But advances in genomics—both in our ability to relate complex traits to the underlying genetic codes, and the ability to make direct edits to genomes—will allow rapid advances in biologically-based cognition. Also, once machines reach human levels of intelligence, our ability to tinker starts to be limited by ethical considerations. Rebooting an operating system is one thing, but what about a sentient being with memories and a sense of free will?

Therefore, the answer to the question “Will AI or genetic modification have the greater impact in the year 2050?” is yes. Considering one without the other neglects an important interaction.

by Stephen Hsu, Nautilus |  Read more:
Image: Sachen Teng