Genomics is about to transform the world.
In case you weren’t paying attention, a lot has been happening in the science of genomics over the past few years. It is, for example, now possible to read one human genome and correct all known errors. Perhaps this sounds terrifying, but genomic science has a track-record in making science fiction reality. ‘Everything that’s alive we want to rewrite,’ boasted Austen Heinz, the CEO of Cambrian Genomics, last year.
It was only in 2010 that Craig Venter’s team in Maryland led us into the era of synthetic genomics when they created Synthia, the first living organism to have a computer for a mother. A simple bacterium, she has a genome just over half a million letters of DNA long, but the potential for scaling up is vast; synthetic yeast and worm projects are underway. (...)
Commensurate with their power to change biology as we know it, the new technologies are driving renewed ethical debates. Uneasiness is being expressed, not only among the general public, but also in high-profile articles and interviews by scientists. When China announced it was modifying human embryos this April, the term ‘CRISPR/Cas9’ trended on the social media site Twitter. CRISPR/Cas9, by the way, is a protein-RNA combo that defends bacteria against marauding viruses. Properly adapted, it allows scientists to edit strings of DNA inside living cells with astonishing precision. It has, for example, been used to show that HIV can be ‘snipped’ out of the human genome, and that female mosquitoes can be turned male to stop the spread of malaria (only females bite).
But one of CRISPR’s co-developers, Jennifer Doudna of the University of California in Berkeley, has ‘strongly discouraged’ any attempts to edit the human genome pending a review of the ethical issues. Well, thanks to China, that ship has sailed. Indeed, now the technology appears to be finding its way into the hands of hobbyists: Nature recently reported that members of the ‘biohacker’ sub-culture have been messing around with CRISPR, though the enthusiast they interviewed didn’t appear to have a clear idea of what he wanted to do with it.
Given that our genetic abilities appear to be reaching a critical threshold, it is worth taking a fairly hard-headed look at what the next few years promise. For instance, could DNA solve some of our pressing energy issues? One project hopes to engineer trees that glow in the dark. You can sign up to preorder one now – at least the weed version of it; trees take too long to mature to be good prototypes. Perhaps the day is not far off when our streets are lined with bioluminescent foliage. This would presumably drive electric streetlamps into obsolescence, like so many other energy-hungry ‘old-fashioned’ technologies.
But this is hardly the only potentially revolutionary project that aims to play out in the next five to 10 years. Venter is working on re-engineering pig lungs so that they can be used in human transplants. This could have a much larger impact than is immediately obvious: about one in 10 deaths in Europe is caused by lung disease. Farther afield, Venter is in the race to find life on Mars with DNA sequencers, and is developing methods of ‘biological teleportation’ – the idea is that you sequence microbial DNA on Mars and then reconstruct the genomes on Earth using 3D printing. The process could work the other way around, too. Venter and Elon Musk are talking of using this technology to terraform Mars with 3D-printed earthly microbes. The whole thing boggles the imagination, of course, but Venter and Musk do have form for pulling off amazing feats. Nevertheless, perhaps we should start our tour of the horizon closer to home.
By 2020, many hospitals will have genomic medicine departments, designing medical therapies based on your personal genetic constitution. Gene sequencers – machines that can take a blood sample and reel off your entire genetic blueprint – will shrink below the size of USB drives. Supermarkets will have shelves of home DNA tests, perhaps nestled between the cosmetics and medicines, for everything from whether your baby will be good at sports to the breed of cat you just adopted, to whether your kitchen counter harbours enough ‘good bacteria’. We will all know someone who has had their genome probed for medical reasons, perhaps even ourselves. Personal DNA stories – including the quality of the bugs in your gut– will be the stuff of cocktail party chitchat.
By 2025, projections suggest that we will have sequenced the genomes of billions of individuals. This is largely down to the explosive growth in the field of cancer genomics. Steve Jobs, the co-founder of Apple, became one of the early adopters of genomic medicine when he had the cancer that killed him sequenced. Many others will follow. And we will become more and more willing to act on what our genes tell us.
In case you weren’t paying attention, a lot has been happening in the science of genomics over the past few years. It is, for example, now possible to read one human genome and correct all known errors. Perhaps this sounds terrifying, but genomic science has a track-record in making science fiction reality. ‘Everything that’s alive we want to rewrite,’ boasted Austen Heinz, the CEO of Cambrian Genomics, last year.
It was only in 2010 that Craig Venter’s team in Maryland led us into the era of synthetic genomics when they created Synthia, the first living organism to have a computer for a mother. A simple bacterium, she has a genome just over half a million letters of DNA long, but the potential for scaling up is vast; synthetic yeast and worm projects are underway. (...)
Commensurate with their power to change biology as we know it, the new technologies are driving renewed ethical debates. Uneasiness is being expressed, not only among the general public, but also in high-profile articles and interviews by scientists. When China announced it was modifying human embryos this April, the term ‘CRISPR/Cas9’ trended on the social media site Twitter. CRISPR/Cas9, by the way, is a protein-RNA combo that defends bacteria against marauding viruses. Properly adapted, it allows scientists to edit strings of DNA inside living cells with astonishing precision. It has, for example, been used to show that HIV can be ‘snipped’ out of the human genome, and that female mosquitoes can be turned male to stop the spread of malaria (only females bite).
But one of CRISPR’s co-developers, Jennifer Doudna of the University of California in Berkeley, has ‘strongly discouraged’ any attempts to edit the human genome pending a review of the ethical issues. Well, thanks to China, that ship has sailed. Indeed, now the technology appears to be finding its way into the hands of hobbyists: Nature recently reported that members of the ‘biohacker’ sub-culture have been messing around with CRISPR, though the enthusiast they interviewed didn’t appear to have a clear idea of what he wanted to do with it.
Given that our genetic abilities appear to be reaching a critical threshold, it is worth taking a fairly hard-headed look at what the next few years promise. For instance, could DNA solve some of our pressing energy issues? One project hopes to engineer trees that glow in the dark. You can sign up to preorder one now – at least the weed version of it; trees take too long to mature to be good prototypes. Perhaps the day is not far off when our streets are lined with bioluminescent foliage. This would presumably drive electric streetlamps into obsolescence, like so many other energy-hungry ‘old-fashioned’ technologies.
But this is hardly the only potentially revolutionary project that aims to play out in the next five to 10 years. Venter is working on re-engineering pig lungs so that they can be used in human transplants. This could have a much larger impact than is immediately obvious: about one in 10 deaths in Europe is caused by lung disease. Farther afield, Venter is in the race to find life on Mars with DNA sequencers, and is developing methods of ‘biological teleportation’ – the idea is that you sequence microbial DNA on Mars and then reconstruct the genomes on Earth using 3D printing. The process could work the other way around, too. Venter and Elon Musk are talking of using this technology to terraform Mars with 3D-printed earthly microbes. The whole thing boggles the imagination, of course, but Venter and Musk do have form for pulling off amazing feats. Nevertheless, perhaps we should start our tour of the horizon closer to home.
By 2020, many hospitals will have genomic medicine departments, designing medical therapies based on your personal genetic constitution. Gene sequencers – machines that can take a blood sample and reel off your entire genetic blueprint – will shrink below the size of USB drives. Supermarkets will have shelves of home DNA tests, perhaps nestled between the cosmetics and medicines, for everything from whether your baby will be good at sports to the breed of cat you just adopted, to whether your kitchen counter harbours enough ‘good bacteria’. We will all know someone who has had their genome probed for medical reasons, perhaps even ourselves. Personal DNA stories – including the quality of the bugs in your gut– will be the stuff of cocktail party chitchat.
By 2025, projections suggest that we will have sequenced the genomes of billions of individuals. This is largely down to the explosive growth in the field of cancer genomics. Steve Jobs, the co-founder of Apple, became one of the early adopters of genomic medicine when he had the cancer that killed him sequenced. Many others will follow. And we will become more and more willing to act on what our genes tell us.
by Dawn Field, Aeon | Read more:
Image: rett Baker/UTMSI/Cameron Thrash (LSU) /Olivia Mason (FSU)