Sucking up CO2
A Swiss company is set to become the first firm to capture carbon dioxide from the air and sell it on a commercial scale, a stepping stone to larger facilities that could one day help to combat global warming. Around July, Climeworks will start capturing some 75 tonnes of CO2 per month at its plant near Zurich, then selling the gas to nearby greenhouses to boost crop growth. Another company — Carbon Engineering in Calgary, Canada, which has been capturing CO2 since October but is yet to bring it to market — hopes to show that it can convert the gas into liquid fuel. Facilities worldwide already capture the gas from power-plant exhausts, but until 2015 only small demonstration projects sucked it up from air.
High cosmic hopes
Physicists think there is a good chance that they will see the first evidence of gravitational waves — ripples in space-time caused by dense, moving objects such as spiralling neutron stars — thanks to the Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO). And Japan will launch Astro-H, a next-generation X-ray satellite observatory that, among other things, could confirm or refute the claim that heavy neutrinos give off dark-matter signals known as bulbulons. Hints of a potential new particle from the supercharged Large Hadron Collider (LHC), which has been running at record energies since last June, could become clearer as the machine rapidly accumulates data. Even if the particle is not confirmed, the LHC could still unearth other exotic phenomena, such as glueballs: particles made entirely of the carriers of the strong nuclear force.
Risky research
Scientists will soon hear whether funding for research that makes viruses more dangerous can resume. In October 2014, the US government abruptly suspended financial support for ‘gain-of-function’ studies. These experiments could increase understanding of how certain pathogens evolve and how they can be destroyed, but critics say that the work also boosts the risk of, for example, accidental release of deadly viruses. A risk–benefit analysis was completed in December 2015, and the US National Science Advisory Board for Biosecurity will issue recommendations in the next few months on whether to resume funding — potentially with tightened restrictions on the research.
by Elizabeth Gibney, Nature | Read more:
Image: Stephen Belcher/Minden Pictures/Corbis
A Swiss company is set to become the first firm to capture carbon dioxide from the air and sell it on a commercial scale, a stepping stone to larger facilities that could one day help to combat global warming. Around July, Climeworks will start capturing some 75 tonnes of CO2 per month at its plant near Zurich, then selling the gas to nearby greenhouses to boost crop growth. Another company — Carbon Engineering in Calgary, Canada, which has been capturing CO2 since October but is yet to bring it to market — hopes to show that it can convert the gas into liquid fuel. Facilities worldwide already capture the gas from power-plant exhausts, but until 2015 only small demonstration projects sucked it up from air.
Cut-and-paste genes
Human trials will get under way for treatments that use DNA-editing technologies. Sangamo Biosciences in Richmond, California, will test the use of enzymes called zinc-finger nucleases to correct a gene defect that causes haemo-philia. Working with Biogen of Cambridge, Massachusetts, it will also start a trial to look at whether the technique can boost a functional form of haemo-globin in people with the blood disorder β-thalassaemia. Scientists and ethicists hope to agree on broad safety and ethical guidelines for gene editing in humans in late 2016. And this year could see the birth of the first gene-edited monkeys that show symptoms of the human disorders they are designed to model.
Human trials will get under way for treatments that use DNA-editing technologies. Sangamo Biosciences in Richmond, California, will test the use of enzymes called zinc-finger nucleases to correct a gene defect that causes haemo-philia. Working with Biogen of Cambridge, Massachusetts, it will also start a trial to look at whether the technique can boost a functional form of haemo-globin in people with the blood disorder β-thalassaemia. Scientists and ethicists hope to agree on broad safety and ethical guidelines for gene editing in humans in late 2016. And this year could see the birth of the first gene-edited monkeys that show symptoms of the human disorders they are designed to model.
High cosmic hopes
Physicists think there is a good chance that they will see the first evidence of gravitational waves — ripples in space-time caused by dense, moving objects such as spiralling neutron stars — thanks to the Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO). And Japan will launch Astro-H, a next-generation X-ray satellite observatory that, among other things, could confirm or refute the claim that heavy neutrinos give off dark-matter signals known as bulbulons. Hints of a potential new particle from the supercharged Large Hadron Collider (LHC), which has been running at record energies since last June, could become clearer as the machine rapidly accumulates data. Even if the particle is not confirmed, the LHC could still unearth other exotic phenomena, such as glueballs: particles made entirely of the carriers of the strong nuclear force.
Risky research
Scientists will soon hear whether funding for research that makes viruses more dangerous can resume. In October 2014, the US government abruptly suspended financial support for ‘gain-of-function’ studies. These experiments could increase understanding of how certain pathogens evolve and how they can be destroyed, but critics say that the work also boosts the risk of, for example, accidental release of deadly viruses. A risk–benefit analysis was completed in December 2015, and the US National Science Advisory Board for Biosecurity will issue recommendations in the next few months on whether to resume funding — potentially with tightened restrictions on the research.
by Elizabeth Gibney, Nature | Read more:
Image: Stephen Belcher/Minden Pictures/Corbis