Thursday, February 11, 2016

Gravitational Waves Exist: The Inside Story of How Scientists Finally Found Them


Just over a billion years ago, many millions of galaxies from here, a pair of black holes collided. They had been circling each other for aeons, in a sort of mating dance, gathering pace with each orbit, hurtling closer and closer. By the time they were a few hundred miles apart, they were whipping around at nearly the speed of light, releasing great shudders of gravitational energy. Space and time became distorted, like water at a rolling boil. In the fraction of a second that it took for the black holes to finally merge, they radiated a hundred times more energy than all the stars in the universe combined. They formed a new black hole, sixty-two times as heavy as our sun and almost as wide across as the state of Maine. As it smoothed itself out, assuming the shape of a slightly flattened sphere, a few last quivers of energy escaped. Then space and time became silent again.

The waves rippled outward in every direction, weakening as they went. On Earth, dinosaurs arose, evolved, and went extinct. The waves kept going. About fifty thousand years ago, they entered our own Milky Way galaxy, just as Homo sapiens were beginning to replace our Neanderthal cousins as the planet’s dominant species of ape. A hundred years ago, Albert Einstein, one of the more advanced members of the species, predicted the waves’ existence, inspiring decades of speculation and fruitless searching. Twenty-two years ago, construction began on an enormous detector, the Laser Interferometer Gravitational-Wave Observatory (LIGO). Then, on September 14, 2015, at just before eleven in the morning, Central European Time, the waves reached Earth. Marco Drago, a thirty-two-year-old Italian postdoctoral student and a member of the LIGO Scientific Collaboration, was the first person to notice them. He was sitting in front of his computer at the Albert Einstein Institute, in Hannover, Germany, viewing the LIGO data remotely. The waves appeared on his screen as a compressed squiggle, but the most exquisite ears in the universe, attuned to vibrations of less than a trillionth of an inch, would have heard what astronomers call a chirp—a faint whooping from low to high. This morning, in a press conference in Washington, D.C., the LIGO team announced that the signal constitutes the first direct observation of gravitational waves.

When Drago saw the signal, he was stunned. “It was difficult to understand what to do,” he told me. He informed a colleague, who had the presence of mind to call the LIGO operations room, in Livingston, Louisiana. Word began to circulate among the thousand or so scientists involved in the project. In California, David Reitze, the executive director of the LIGO Laboratory, saw his daughter off to school and went to his office, at Caltech, where he was greeted by a barrage of messages. “I don’t remember exactly what I said,” he told me. “It was along these lines: ‘Holy shit, what is this?’ ” Vicky Kalogera, a professor of physics and astronomy at Northwestern University, was in meetings all day, and didn’t hear the news until dinnertime. “My husband asked me to set the table,” she said. “I was completely ignoring him, skimming through all these weird e-mails and thinking, What is going on?” Rainer Weiss, the eighty-three-year-old physicist who first suggested building LIGO, in 1972, was on vacation in Maine. He logged on, saw the signal, and yelled “My God!” loudly enough that his wife and adult son came running.

The collaborators began the arduous process of double-, triple-, and quadruple-checking their data. “We’re saying that we made a measurement that is about a thousandth the diameter of a proton, that tells us about two black holes that merged over a billion years ago,” Reitze said. “That is a pretty extraordinary claim and it needs extraordinary evidence.” In the meantime, the LIGO scientists were sworn to absolute secrecy. As rumors of the finding spread, from late September through this week, media excitement spiked; there were rumblings about a Nobel Prize. But the collaborators gave anyone who asked about it an abbreviated version of the truth—that they were still analyzing data and had nothing to announce. Kalogera hadn’t even told her husband. (...)

LIGO is part of a larger effort to explore one of the more elusive implications of Einstein’s general theory of relativity. The theory, put simply, states that space and time curve in the presence of mass, and that this curvature produces the effect known as gravity. When two black holes orbit each other, they stretch and squeeze space-time like children running in circles on a trampoline, creating vibrations that travel to the very edge; these vibrations are gravitational waves. They pass through us all the time, from sources across the universe, but because gravity is so much weaker than the other fundamental forces of nature—electromagnetism, for instance, or the interactions that bind an atom together—we never sense them. Einstein thought it highly unlikely that they would ever be detected. He twice declared them nonexistent, reversing and then re-reversing his own prediction. A skeptical contemporary noted that the waves seemed to “propagate at the speed of thought.”

by Nicola Twilley, New Yorker |  Read more:
Image: Aleks Sennwald