Wednesday, May 4, 2016

IBM Is Now Letting Anyone Play With Its Quantum Computer

Quantum computing is computing at its most esoteric. It’s an experimental, enormously complex, sometimes downright confusing technology that’s typically the domain of hardcore academics and organizations like Google and NASA. But that might be changing.

Today, IBM unveiled an online service that lets anyone use the five-qubit quantum computer its researchers have erected at a research lab in Yorktown Heights, New York. You can access the machine over the Internet via a simple software interface—or at least it’s simple if you understand the basics of quantum computing. This new service is hardly something the everyday consumer will use, but it’s a big deal for the many researchers now working to build a practical quantum computer—a computer that moves beyond just 1s and 0s to become exponentially more powerful than today’s machines. In that sense, IBM is indeed striving to bring quantum computing to the world at large. (...)

Meet the Qubit

Today’s computers store data in extremely small transistors. Each transistor can hold a single “bit” of information: a 1 or a 0. But about thirty years ago, scientists proposed a machine that could go beyond that binary, a machine that could store data in a system that obeys the seemingly magical principles of quantum mechanics. Instead of just a 1 or a 0, a “qubit” could store both at the same time, thanks to what’s called the superposition principle.

By extension, two qubits could hold four values simultaneously: 00, 01, 10, and 11. And if you keep adding qubits, you could, in theory, build a machine far more powerful than any that exists today. “These are things you can’t explain with regular logic,” says Jerry Chow, the former Yale researcher who helps oversee IBM’s quantum computing work. “Quantum computing and quantum algorithms are all about: how do you harness that?”

But that kind of ultra-powerful machine doesn’t yet exist. Qubits, you see, are slippery things. If you try to observe the state of a quantum system, it “decoheres,” falling into one state or the other. It no longer holds both a 0 and a 1. It holds only a O or a 1, like the classical computers of today. To build a true quantum computer, researchers must harness the probability that a qubit will decohere into one state versus the other.
The Same Result Each Time

There are many ways of doing this, and though none has truly cracked the problem, some are quite promising. IBM has built a quantum computer that operates by dropping superconducting circuits into an enormous sub-zero refrigerator, and it spans five qubits. But now, in sharing this machine with the world at large, the company hopes to accelerate its progress, aiming to extend its power to 50 or possibly 100 qubits.

According to David Cory, a professor with the University of Waterloo’s Institute for Quantum Computing, this sort of online quantum computer—a quantum cloud service, if you will—is pretty much unprecedented. Building such a service, he explains, is far more difficult than you might expect. “It’s not a simple thing to do,” he says. “Quantum systems are really quite delicate.”

by Cade Metz, Wired |  Read more:
Image: IBM