Wednesday, July 13, 2016

The Space Station Is Becoming A Spy Satellite For Wildlife

In 1250, the prior of a Cistercian Abbey reputedly tied a note to a leg of a barn swallow, which read: “Oh swallow, where do you live in winter?” The next spring, he got a response: “In Asia, in the home of Petrus.”

This perhaps apocryphal story marks one of the first known instances of someone tagging an animal to track its movements. Thanks to many such endeavors, we now know that every year, barn swallows migrate between their breeding grounds in the northern hemisphere to wintering grounds throughout the tropics and the south. In 1912, one intrepid individual that was ringed in England turned up 7,500 miles away in South Africa.

But swallows are the exception rather than the rule. The journeys of most migratory animals, especially smaller species, are a mystery. Flocks, herds, and shoals are constantly crisscrossing the globe, but despite the intense surveillance of our planet, we often have no idea what paths they take. “They leave in one place and we don’t know what happens to them until they show up in another place,” says Meg Crofoot from the University of California, Davis.

This ignorance makes it hard to save threatened species: what works in one part of the world may be completely undone as animals travel to another. It also jeopardizes our own health. Where are the birds that harbor avian flu? Where do the bats that carry Ebola go? What about the red-billed quelea, a small finch that flocks in millions and devours crops with locust-like voraciousness?

Since the 1960s, scientists have tried to answer questions like these by tagging animals with radio transmitters. At first, they followed the signals with clunky hand-held antennae; later, they loaded receivers onto satellites, allowing them to track animals over long distances and rough terrain. But even after decades of innovation, satellite telemetry tags are still expensive, slow, and clunky. The smallest weighs around 10 grams and would overburden any animal lighter than 240 grams. That rules out three quarters of birds and mammals. There are much lighter data-loggers around but they’re light because they don’t transmit any data—so you have to recapture whatever animal you’ve tagged to find out where it has been.

Frustrated by these limitations, Martin Wiselski at the Max Planck Institute for Ornithology devised the ICARUS Initiative (International Cooperation for Animal Research Using Space). His team has developed extremely light radio tags that can be fitted to even tiny animals, and they’re sending a dedicated receiver to the International Space Station next summer. Once it’s up, it will be able to map the whereabouts of hundreds, if not thousands of birds, bats, and other travelers, in real-time. “It will be the best ever possible sensing network of life on the planet,” says Wiselski.

He came up with the idea while talking to astronomer George Swenson, who helped to pioneer the use of radio telemetry for tracking wildlife, and who also helped to construct the radio telescope known as the Very Large Array. “We were sitting on some stairs in Panama, having beer, and looking over the canal,” says Wiselski. “I said there must be a way to receive these small transmitters from all over the globe. George said this is what we do all the time—build telescopes to look at small radio sources. We look up into the sky. You need to look at the ground.”

Still, Swenson predicted that it would take 15 years to get the system up and running. Wiselski told him he was being ridiculous. That was 15 years ago. (The Icarus myth, after all, is more about hubris than flight.) Getting funding was the hardest part. “We went to NASA,” says Wiselski. “They thought the project so unlikely that it was set in the same category as the space elevator.” (...)

Eager researchers are already lining up to use the tags. To begin with, between 40 and 50 teams will use ICARUS to study birds, bats, sea turtles, and more. All the data from this work will eventually be uploaded to MoveBank, a free online database for animal tracking studies. “It’s a big data project for life on the planet,” says Wiselski. (...)

By tracking animals, researchers may also be able to discover the secret pathways and hiding places of viruses and other pathogens. Consider Ebola: the identity and location of its wild reservoirs are still hotly debated, although it seems that certain bat species can harbor it. “We can take a blood sample and check if they have Ebola, put tags on them, let them go, recapture them and take another sample,” says Wiselski. “We can then say that bats that have been through this part of the Congo have seen Ebola.”

Beyond charting the movements of animals, Wiselski thinks that ICARUS could be a deterrent to those who would stop animals from moving altogether. If wildlife managers start tagging elephant ears or rhino horns, it might deter poachers from killing the animals and transporting their body parts, lest they in turn be tracked by overhead satellites. “We have request from people in Mongolia, because people are stealing the bones from the dinosaurs,” adds Wiselski.

by Ed Yong, The Atlantic |  Read more:
Image: Reuters