*"Odd," agreed Reg. "I’ve certainly never come across any irreversible mathematics involving sofas. Could be a new field. Have you spoken to any spatial geometricians?"*

—Douglas Adams, "Dirk Gently's Holistic Detective Agency"

The mathematician Leo Moser posed in 1966 the following curious mathematical problem: what is the shape of largest area in the plane that can be moved around a right-angled corner in a two-dimensional hallway of width 1? This question became known as the moving sofa problem, and is still unsolved fifty years after it was first asked.

To understand what makes this question tricky, let's think what kind of "sofa" shapes we can construct that can move around a corner. How about a unit square?

Well, a unit square only has area 1; surely we can do better? For example, a semicircle with radius 1 is another simple example that works:

The semicircular sofa has a larger area than the square one, ᴨ/2 (approximately 1.57). It is also more interesting, because in order to move around the corner it rotates, whereas the square sofa merely translates. Now, if only we could combine rotation and translation, maybe we could construct an even bigger sofa shape? Indeed, the mathematician John Hammersley noticed that if the semicircle is cut into two quarter-circles, which are pulled apart and the gap between them filled with a rectangular block, we get a larger sofa shape, which could be moved around the corner if only a smaller semicircular hole is also removed from the rectangular block. Here is the resulting shape, that is starting to look a bit more like an actual sofa:

The moving sofa problem has several other variants. One of them, studied by John Horton Conway and others, asks for the largest area sofa that can be moved around a 90-degree turn both to the right and to the left. By extending the techniques used by Gerver in his 1992 paper, I found such an "ambidextrous sofa" shape with an area of approximately 1.64495, which may be the largest possible area.

by Dan Romik | Read more:

Images: Dan Romik