It’s like the discovery of the New World,” David Reich tells me. “Everything is new, nobody’s looked at it in this way before, so how can things not be interesting?”
The excitement surrounding David Reich’s ancient genetics lab at Harvard Medical School is almost palpable. Journals like Science and Nature are unstinting in their praise of the work being done in the Reich Laboratory. Reich and his colleagues are rewriting the history of the human species. Like a scientific Cecil B. DeMille, they are working toward creating an epic cinematic reenvisioning of human history that takes us deep into the mists of the past, tens of thousands of years ago.
In February of this year the forty-three-year-old Reich was named corecipient (with his colleague Svante Pääbo at Germany’s Max Planck Institute) of the $1 million Dan David Prize in archaeology and natural selection for being “the world’s leading pioneer in analyzing ancient human DNA,” which led to the discovery that Neanderthals and humans interbred—“a quantum leap in reconstructing our evolutionary past.”
A discovery, I was to learn from Reich in a conversation that preceded the prize, that had been superseded by even more astonishing developments: evidence of interaction with human and non-Neanderthal variants of hominids, including evanescent but once real “ghost populations.”
This is not “ancient history,” which goes back a few thousand years to the dawn of writing. This is deeper in the past than “deep history,” which takes us even further back—before the invention of agriculture, before the invention of language, before the invention of the wheel.
This is deep, deep history, tens of thousands of years ago. When, it’s now emerging, hordes of humans, vast tribes of variations of hominids—Homo sapiens, Neanderthals, the newly discovered “Denisovans,” the mysterious “ghost populations”—ranged and thronged and clashed and bred and interbred (and probably exterminated large portions of each other) across vast landscapes that were battlefields and graveyards.
It’s deep, deep history that’s beginning to unscroll a vast pageant through the wonders of big data crunching and the analysis of ancient DNA samples from fragments of bone and mummies that have been rotting away in the dusty basements of museums.
And not only in old bones and mummified objects. The evidence for much of these vast clashes and close encounters is something we carry around within us in microscopic stretches of DNA that are the only legacy left from extinct variant species of humans. In microscopic sequences of chemical bonds on the double helixes of heredity there are traces of ancient variations on human species who lived and thrived and left nothing else behind beyond a few random sequences of chemical bonds. The faintest of faint echoes of a prehistoric past we’re only beginning to grasp. It’s a shift in focus as radical as the one that allowed us to glimpse—through Hubble-era telescopes—the billions of galaxies of the knowable universe and radically shift our perspective on our place in deep space. Suddenly we are able to see in the galaxies of genes within us and the stories they tell of a new way of envisioning our place in the history of the planet.
And this fellow David Reich, sitting across from me in a corner of his lab on Avenue Louis Pasteur in Boston, this skinny slip of a hominid, David Reich, clad in a T-shirt and slacks—the Zuckerberg couture of Harvard geniuses, you might say—is at the heart of what is likely to be remembered as one of the great scientific revolutions. One unimaginable just a few years ago. (...)
What Reich’s lab has begun to unveil is that at least two previously unknown humanoid species interbred in the deep past with both humans and Neanderthals but are now extinct. Extinct but survive within us as fragments of ancient DNA code that reflect memories of interactions—let’s be frank, sex—with other hominid variations. Proof of interbreeding and extinctions on a scale that suggest huge dramas—wars, migrations, invasions—we, or really, Reich are only beginning to reconstruct. Just as we are only beginning to reconstruct those lost populations and deal with the realization we have the ability to build a model of the billions of genetic combinations that make up modern humans.
It’s this realization—the kind of work Reich and his colleagues are doing—that makes people nervous about the powers the ancient DNA savants hold over the shape of humans to come. (...)
I turn hesitantly to the dark side of the genetic revolution, the one highlighted by the Washington Post story about the “secret Harvard meeting” incited by concern over synthetic human genomes and its revolutionary potential. “There’s been recent concern among bioethicists about just how rapid the ability to create genomes has become. There was some meeting a while ago that dealt with the downside of being able to create and implant genes in humans or viruses.” In viruses the concern is that if genes for illness can be disarmed, they can also be armed up—creating an “arms race” of germ warfare. “What’s your feeling about this whole kerfuffle?”
“Well, actually the person involved in that is down the hall in this building, but that is a very different branch of genetics from what I do. That is engineering. What I do is inference about the past. I’m just trying to learn about history, and they’re actually trying to modify genomes, so it’s completely different. I’m trying to read genomes; they’re trying to write genomes. It’s a very different thing, and I think it’s one of these modern technologies that is potentially disruptive to our very being. Genetics. You know, the ability to engineer genomes is the biological equivalent of nuclear weapons. It’s really a fundamentally powerful—”
The biological equivalent of nuclear weapons! His concern seems heartfelt. “That’s kind of breathtaking when you think about it. Splitting the atoms, splitting the genome, or whatever…”
“Yeah, yeah, it’s a kind of reversal of things you couldn’t or haven’t done. You couldn’t split an atom apart before nuclear technology, and you could not reverse engineer the genome before modern recombinant genetics. That’s a very powerful thing. It’s a powerful tool, and it could be used—or misused, presumably—used, and abused like other types, like nuclear technology. It’s quite a profound thing.”
“Do we even know the endpoint of that? Could we create life?”
“Presumably.”
by Ron Rosenbaum, Lapham's Quarterly | Read more:
The excitement surrounding David Reich’s ancient genetics lab at Harvard Medical School is almost palpable. Journals like Science and Nature are unstinting in their praise of the work being done in the Reich Laboratory. Reich and his colleagues are rewriting the history of the human species. Like a scientific Cecil B. DeMille, they are working toward creating an epic cinematic reenvisioning of human history that takes us deep into the mists of the past, tens of thousands of years ago.
In February of this year the forty-three-year-old Reich was named corecipient (with his colleague Svante Pääbo at Germany’s Max Planck Institute) of the $1 million Dan David Prize in archaeology and natural selection for being “the world’s leading pioneer in analyzing ancient human DNA,” which led to the discovery that Neanderthals and humans interbred—“a quantum leap in reconstructing our evolutionary past.”
A discovery, I was to learn from Reich in a conversation that preceded the prize, that had been superseded by even more astonishing developments: evidence of interaction with human and non-Neanderthal variants of hominids, including evanescent but once real “ghost populations.”
This is not “ancient history,” which goes back a few thousand years to the dawn of writing. This is deeper in the past than “deep history,” which takes us even further back—before the invention of agriculture, before the invention of language, before the invention of the wheel.
This is deep, deep history, tens of thousands of years ago. When, it’s now emerging, hordes of humans, vast tribes of variations of hominids—Homo sapiens, Neanderthals, the newly discovered “Denisovans,” the mysterious “ghost populations”—ranged and thronged and clashed and bred and interbred (and probably exterminated large portions of each other) across vast landscapes that were battlefields and graveyards.
It’s deep, deep history that’s beginning to unscroll a vast pageant through the wonders of big data crunching and the analysis of ancient DNA samples from fragments of bone and mummies that have been rotting away in the dusty basements of museums.
And not only in old bones and mummified objects. The evidence for much of these vast clashes and close encounters is something we carry around within us in microscopic stretches of DNA that are the only legacy left from extinct variant species of humans. In microscopic sequences of chemical bonds on the double helixes of heredity there are traces of ancient variations on human species who lived and thrived and left nothing else behind beyond a few random sequences of chemical bonds. The faintest of faint echoes of a prehistoric past we’re only beginning to grasp. It’s a shift in focus as radical as the one that allowed us to glimpse—through Hubble-era telescopes—the billions of galaxies of the knowable universe and radically shift our perspective on our place in deep space. Suddenly we are able to see in the galaxies of genes within us and the stories they tell of a new way of envisioning our place in the history of the planet.
And this fellow David Reich, sitting across from me in a corner of his lab on Avenue Louis Pasteur in Boston, this skinny slip of a hominid, David Reich, clad in a T-shirt and slacks—the Zuckerberg couture of Harvard geniuses, you might say—is at the heart of what is likely to be remembered as one of the great scientific revolutions. One unimaginable just a few years ago. (...)
What Reich’s lab has begun to unveil is that at least two previously unknown humanoid species interbred in the deep past with both humans and Neanderthals but are now extinct. Extinct but survive within us as fragments of ancient DNA code that reflect memories of interactions—let’s be frank, sex—with other hominid variations. Proof of interbreeding and extinctions on a scale that suggest huge dramas—wars, migrations, invasions—we, or really, Reich are only beginning to reconstruct. Just as we are only beginning to reconstruct those lost populations and deal with the realization we have the ability to build a model of the billions of genetic combinations that make up modern humans.
It’s this realization—the kind of work Reich and his colleagues are doing—that makes people nervous about the powers the ancient DNA savants hold over the shape of humans to come. (...)
I turn hesitantly to the dark side of the genetic revolution, the one highlighted by the Washington Post story about the “secret Harvard meeting” incited by concern over synthetic human genomes and its revolutionary potential. “There’s been recent concern among bioethicists about just how rapid the ability to create genomes has become. There was some meeting a while ago that dealt with the downside of being able to create and implant genes in humans or viruses.” In viruses the concern is that if genes for illness can be disarmed, they can also be armed up—creating an “arms race” of germ warfare. “What’s your feeling about this whole kerfuffle?”
“Well, actually the person involved in that is down the hall in this building, but that is a very different branch of genetics from what I do. That is engineering. What I do is inference about the past. I’m just trying to learn about history, and they’re actually trying to modify genomes, so it’s completely different. I’m trying to read genomes; they’re trying to write genomes. It’s a very different thing, and I think it’s one of these modern technologies that is potentially disruptive to our very being. Genetics. You know, the ability to engineer genomes is the biological equivalent of nuclear weapons. It’s really a fundamentally powerful—”
The biological equivalent of nuclear weapons! His concern seems heartfelt. “That’s kind of breathtaking when you think about it. Splitting the atoms, splitting the genome, or whatever…”
“Yeah, yeah, it’s a kind of reversal of things you couldn’t or haven’t done. You couldn’t split an atom apart before nuclear technology, and you could not reverse engineer the genome before modern recombinant genetics. That’s a very powerful thing. It’s a powerful tool, and it could be used—or misused, presumably—used, and abused like other types, like nuclear technology. It’s quite a profound thing.”
“Do we even know the endpoint of that? Could we create life?”
“Presumably.”
by Ron Rosenbaum, Lapham's Quarterly | Read more:
Image: The British Museum