Mark was a sophomore at MIT in Cambridge, Massachusetts, when he began mining cryptocurrencies more or less by accident.
In November 2016, he stumbled on NiceHash, an online marketplace for individuals to mine cryptocurrency for willing buyers. His desktop computer, boosted with a graphics card, was enough to get started. Thinking he might make some money, Mark, who asked not to use his last name, downloaded the platform’s mining software and began mining for random buyers in exchange for payments in bitcoin. Within a few weeks, he had earned back the $120 cost of his graphics card, as well as enough to buy another for $200.
From using NiceHash, he switched to mining ether, then the most popular bitcoin alternative. To increase his computational power, he scrounged up several unwanted desktop computers from a professor who “seemed to think that they were awful and totally trash.” When equipped with the right graphics cards, the “trash” computers worked fine.
Each time Mark mined enough ether to cover the cost, he bought a new graphics card, trading leftover currency into bitcoin for safekeeping. By March 2017, he was running seven computers, mining ether around the clock from his dorm room. By September his profits totaled one bitcoin—worth roughly $4,500 at the time. Now, four months later, after bitcoin’s wild run and the diversification of his cryptocoin portfolio, Mark estimates he has $20,000 in digital cash. “It just kind of blew up,” he says.
Exploiting a crucial competitive advantage and motivated by profit and a desire to learn the technology, students around the world are launching cryptocurrency mining operations right from their dorm rooms. In a typical mining operation, electricity consumption accounts for the highest fraction of operational costs, which is why the largest bitcoin mines are based in China. But within Mark’s dorm room, MIT foots the bill. That gives him and other student miners the ability to earn higher profit margins than most other individual miners.
In the months since meeting Mark, I’ve interviewed seven other miners from the US, Canada, and Singapore who ran or currently run dorm room cryptomining operations, and I’ve learned of many more who do the same. Initially, almost every student began mining because it was fun, cost-free, and even profitable. As their operations grew, so did their interest in cryptocurrency and in blockchain, the underlying technology. Mining, in other words, was an unexpected gateway into discovering a technology that many predict will dramatically transform our lives. (...)
In November 2016, he stumbled on NiceHash, an online marketplace for individuals to mine cryptocurrency for willing buyers. His desktop computer, boosted with a graphics card, was enough to get started. Thinking he might make some money, Mark, who asked not to use his last name, downloaded the platform’s mining software and began mining for random buyers in exchange for payments in bitcoin. Within a few weeks, he had earned back the $120 cost of his graphics card, as well as enough to buy another for $200.

Each time Mark mined enough ether to cover the cost, he bought a new graphics card, trading leftover currency into bitcoin for safekeeping. By March 2017, he was running seven computers, mining ether around the clock from his dorm room. By September his profits totaled one bitcoin—worth roughly $4,500 at the time. Now, four months later, after bitcoin’s wild run and the diversification of his cryptocoin portfolio, Mark estimates he has $20,000 in digital cash. “It just kind of blew up,” he says.
Exploiting a crucial competitive advantage and motivated by profit and a desire to learn the technology, students around the world are launching cryptocurrency mining operations right from their dorm rooms. In a typical mining operation, electricity consumption accounts for the highest fraction of operational costs, which is why the largest bitcoin mines are based in China. But within Mark’s dorm room, MIT foots the bill. That gives him and other student miners the ability to earn higher profit margins than most other individual miners.
In the months since meeting Mark, I’ve interviewed seven other miners from the US, Canada, and Singapore who ran or currently run dorm room cryptomining operations, and I’ve learned of many more who do the same. Initially, almost every student began mining because it was fun, cost-free, and even profitable. As their operations grew, so did their interest in cryptocurrency and in blockchain, the underlying technology. Mining, in other words, was an unexpected gateway into discovering a technology that many predict will dramatically transform our lives. (...)
A dorm room operation
Years before meeting Mark, when I was a junior at MIT, I had heard rumors of my peers mining bitcoin. After its value exploded, and along with it, the necessary computational and electrical power to mine it, I assumed that dorm room mining was no longer viable. What I hadn’t considered was the option of mining alternate cryptocurrencies, including ethereum, which can and do thrive as small-scale operations.
When mining for cryptocurrency, computational power, along with low power costs, is king. Miners around the world compete to solve math problems for a chance to earn digital coins. The more computational power you have, the greater your chances of getting returns.
To profitably mine bitcoin today, you need an application-specific integrated circuit, or ASIC—specialized hardware designed for bitcoin-mining efficiency. An ASIC can have 100,000 times more computational power than a standard desktop computer equipped with a few graphics cards. But ASICs are expensive—the most productive ones easily cost several thousands of dollars—and they suck power. If bitcoin prices aren’t high enough to earn more revenue than the cost of electricity, the pricey hardware cannot be repurposed for any other function.
In contrast, alternate currencies like ethereum are “ASIC-resistant,” because ASICS designed to mine ether don’t exist. That means ether can be profitably mined with just a personal computer. Rather than rely solely on a computer’s core processor (colloquially called a “CPU”), however, miners pair it with graphics cards (“GPUs”) to increase the available computational power. Whereas CPUs are designed to solve one problem at a time, GPUs are designed to simultaneously solve hundreds. The latter dramatically raises the chances of getting coins.
Years before meeting Mark, when I was a junior at MIT, I had heard rumors of my peers mining bitcoin. After its value exploded, and along with it, the necessary computational and electrical power to mine it, I assumed that dorm room mining was no longer viable. What I hadn’t considered was the option of mining alternate cryptocurrencies, including ethereum, which can and do thrive as small-scale operations.
When mining for cryptocurrency, computational power, along with low power costs, is king. Miners around the world compete to solve math problems for a chance to earn digital coins. The more computational power you have, the greater your chances of getting returns.
To profitably mine bitcoin today, you need an application-specific integrated circuit, or ASIC—specialized hardware designed for bitcoin-mining efficiency. An ASIC can have 100,000 times more computational power than a standard desktop computer equipped with a few graphics cards. But ASICs are expensive—the most productive ones easily cost several thousands of dollars—and they suck power. If bitcoin prices aren’t high enough to earn more revenue than the cost of electricity, the pricey hardware cannot be repurposed for any other function.
In contrast, alternate currencies like ethereum are “ASIC-resistant,” because ASICS designed to mine ether don’t exist. That means ether can be profitably mined with just a personal computer. Rather than rely solely on a computer’s core processor (colloquially called a “CPU”), however, miners pair it with graphics cards (“GPUs”) to increase the available computational power. Whereas CPUs are designed to solve one problem at a time, GPUs are designed to simultaneously solve hundreds. The latter dramatically raises the chances of getting coins.
by Karen Hao, Quartz | Read more:
Image: rebcenter-moscow/Pixabay