Wednesday, March 7, 2018

Why We Pretend to Clean Up Oil Spills

In many respects, society’s theatrical response to catastrophic oil spills resembles the way medical professionals respond to aggressive cancer in an elderly patient. Because surgery is available, it is often used. Surgery also creates the impression that the health care system is doing something even though it can’t change or reverse the patient’s ultimate condition. In an oil-based society, the cleanup delusion is also irresistible. Just as it is difficult for us to acknowledge the limits of medical intervention, society struggles to acknowledge the limits of technologies or the consequences of energy habits. And that’s where the state of marine oil spill response sits today: it creates little more than an illusion of a cleanup. Scientists—outside the oil industry—call it “prime-time theater” or “response theater.”

The hard scientific reality is this: a big spill is almost impossible to contain because it is physically impossible to mobilize the labor needed and current cleanup technologies in a timely fashion. When the city of Vancouver released a study in 2015 on the effectiveness of responses to large tanker or pipeline spills along the southern coast of British Columbia, the conclusion was blunt: “collecting and removing oil from the sea surface is a challenging, time-sensitive, and often ineffective process,” even in calm water.

Scientists have recognized this reality for a long time. During the 1970s when the oil industry was poised to invade the Beaufort Sea, the Canadian government employed more than 100 researchers to gauge the impacts of an oil spill on Arctic ice. The researchers doused sea ducks and ring seals with oil and set pools of oil on fire under a variety of ice conditions. They also created sizable oil spills (one was almost 60,000 liters, a medium-sized spill) in the Beaufort Sea and tried to contain them with booms and skimmers. They prodded polar bears into a man-made oil slick only to discover that bears, like birds, will lick oil off their matted fur and later die of kidney failure. In the end, the Beaufort Sea Project concluded that “oil spill countermeasures, techniques, and equipment” would have “limited effectiveness” on ice-covered waters. The reports, however, failed to stop Arctic drilling.

Part of the illusion has been created by ineffective technologies adopted and billed by industry as “world class.” Ever since the 1970s, the oil and gas industry has trotted out four basic ways to deal with ocean spills: booms to contain the oil; skimmers to remove the oil; fire to burn the oil; and chemical dispersants, such as Corexit, to break the oil into smaller pieces. For small spills these technologies can sometimes make a difference, but only in sheltered waters. None has ever been effective in containing large spills.

Conventional containment booms, for example, don’t work in icy water, or where waves run amok. Burning oil merely transforms one grave problem—water pollution—into sooty greenhouse gases and creates air pollution. Dispersants only hide the oil by scattering small droplets into the water column, yet they often don’t even do that since conditions have to be just right for dispersants to work. Darryl McMahon, a director of RESTCo, a firm pursuing more effective cleanup technologies, has written extensively about the problem, and his opinion remains: “Sadly, even after over 40 years experience, the outcomes are not acceptable. In many cases, the strategy is still to ignore spills on open water, only addressing them when the slicks reach shore.”

The issue partly boils down to scale, explains Jeffrey Short, a retired National Oceanic and Atmospheric Administration research chemist who studied the aftermath of the 2010 BP disaster as well as the Exxon Valdez spill in Prince William Sound, which grew at the alarming rate of half a football field per second over two days. “Go try and control something like that,” says Short. Yet almost 30 years after the Exxon Valdez contaminated much of Prince William Sound, the cleanup technology has changed little.

“What I find the most disturbing is the tendency for responsible authorities and industry to adopt technologies mainly because of their optics and with scant regard for their efficacy,” says Short. In addition, chaos rules in the aftermath of a spill. The enormous political pressure to do something routinely sacrifices any duty to properly evaluate what kind of response might actually work over time, says Short. “Industry says ‘we just want to clean it up,’ yet their demonstrative ability to clean it up sucks.”

Consider, for a moment, the industry’s dismal record on oil recovery. Average citizens may think that a successful marine oil spill cleanup actually involves recovering what has been spilled. They may also expect the amount of oil recovered would increase over time as industry learns and adopts better technologies. But there has been little improvement since the 1960s.

During the BP disaster, the majority of the oil evaporated, dropped to the ocean bottom, smothered beaches, dissolved, or remained on or just below the water’s surface as sheen or tar balls. Some oil-chewing bacteria offered assistance by biodegrading the oil after it had been dispersed. Rough estimates indicate that, out of the total amount of oil it spilled, BP recovered 3 percent through skimming, 17 percent from siphoning at the wellhead, and 5 percent from burning. Even so, that’s not much better than the Exxon Valdez spill in 1989 when industry recovered an estimated 14 percent of the oil. Transport Canada admits that it expects only 10 to 15 percent of a marine oil spill to ever be recovered from open water. “Even informed people are taken aback by these numbers,” says Short.

by Andrew Nikiforuk, Smithsonian | Read more:
Image:RGB Ventures/SuperStock/Alamy Stock Photo