Wednesday, September 25, 2019

Artificial Intelligence Takes On Earthquake Prediction

In May of last year, after a 13-month slumber, the ground beneath Washington’s Puget Sound rumbled to life. The quake began more than 20 miles below the Olympic mountains and, over the course of a few weeks, drifted northwest, reaching Canada’s Vancouver Island. It then briefly reversed course, migrating back across the U.S. border before going silent again. All told, the monthlong earthquake likely released enough energy to register as a magnitude 6. By the time it was done, the southern tip of Vancouver Island had been thrust a centimeter or so closer to the Pacific Ocean.

Because the quake was so spread out in time and space, however, it’s likely that no one felt it. These kinds of phantom earthquakes, which occur deeper underground than conventional, fast earthquakes, are known as “slow slips.” They occur roughly once a year in the Pacific Northwest, along a stretch of fault where the Juan de Fuca plate is slowly wedging itself beneath the North American plate. More than a dozen slow slips have been detected by the region’s sprawling network of seismic stations since 2003. And for the past year and a half, these events have been the focus of a new effort at earthquake prediction by the geophysicist Paul Johnson.

Johnson’s team is among a handful of groups that are using machine learning to try to demystify earthquake physics and tease out the warning signs of impending quakes. Two years ago, using pattern-finding algorithms similar to those behind recent advances in image and speech recognition and other forms of artificial intelligence, he and his collaborators successfully predicted temblors in a model laboratory system — a feat that has since been duplicated by researchers in Europe.

Now, in a paper posted this week on the scientific preprint site arxiv.org, Johnson and his team report that they’ve tested their algorithm on slow slip quakes in the Pacific Northwest. The paper has yet to undergo peer review, but outside experts say the results are tantalizing. According to Johnson, they indicate that the algorithm can predict the start of a slow slip earthquake to “within a few days — and possibly better.”

“This is an exciting development,” said Maarten de Hoop, a seismologist at Rice University who was not involved with the work. “For the first time, I think there’s a moment where we’re really making progress” toward earthquake prediction.

Mostafa Mousavi, a geophysicist at Stanford University, called the new results “interesting and motivating.” He, de Hoop, and others in the field stress that machine learning has a long way to go before it can reliably predict catastrophic earthquakes — and that some hurdles may be difficult, if not impossible, to surmount. Still, in a field where scientists have struggled for decades and seen few glimmers of hope, machine learning may be their best shot. (...)

More than a decade ago, Johnson began studying “laboratory earthquakes,” made with sliding blocks separated by thin layers of granular material. Like tectonic plates, the blocks don’t slide smoothly but in fits and starts: They’ll typically stick together for seconds at a time, held in place by friction, until the shear stress grows large enough that they suddenly slip. That slip — the laboratory version of an earthquake — releases the stress, and then the stick-slip cycle begins anew.

When Johnson and his colleagues recorded the acoustic signal emitted during those stick-slip cycles, they noticed sharp peaks just before each slip. Those precursor events were the laboratory equivalent of the seismic waves produced by foreshocks before an earthquake. But just as seismologists have struggled to translate foreshocks into forecasts of when the main quake will occur, Johnson and his colleagues couldn’t figure out how to turn the precursor events into reliable predictions of laboratory quakes. “We were sort of at a dead end,” Johnson recalled. “I couldn’t see any way to proceed.”

At a meeting a few years ago in Los Alamos, Johnson explained his dilemma to a group of theoreticians. They suggested he reanalyze his data using machine learning — an approach that was well known by then for its prowess at recognizing patterns in audio data.

Together, the scientists hatched a plan. They would take the roughly five minutes of audio recorded during each experimental run — encompassing 20 or so stick-slip cycles — and chop it up into many tiny segments. For each segment, the researchers calculated more than 80 statistical features, including the mean signal, the variation about that mean, and information about whether the segment contained a precursor event. Because the researchers were analyzing the data in hindsight, they also knew how much time had elapsed between each sound segment and the subsequent failure of the laboratory fault.

Armed with this training data, they used what’s known as a “random forest” machine learning algorithm to systematically look for combinations of features that were strongly associated with the amount of time left before failure. After seeing a couple of minutes’ worth of experimental data, the algorithm could begin to predict failure times based on the features of the acoustic emission alone.

Johnson and his co-workers chose to employ a random forest algorithm to predict the time before the next slip in part because — compared with neural networks and other popular machine learning algorithms — random forests are relatively easy to interpret. The algorithm essentially works like a decision tree in which each branch splits the data set according to some statistical feature. The tree thus preserves a record of which features the algorithm used to make its predictions — and the relative importance of each feature in helping the algorithm arrive at those predictions.

When the Los Alamos researchers probed those inner workings of their algorithm, what they learned surprised them. The statistical feature the algorithm leaned on most heavily for its predictions was unrelated to the precursor events just before a laboratory quake. Rather, it was the variance — a measure of how the signal fluctuates about the mean — and it was broadcast throughout the stick-slip cycle, not just in the moments immediately before failure. The variance would start off small and then gradually climb during the run-up to a quake, presumably as the grains between the blocks increasingly jostled one another under the mounting shear stress. Just by knowing this variance, the algorithm could make a decent guess at when a slip would occur; information about precursor events helped refine those guesses.

The finding had big potential implications. For decades, would-be earthquake prognosticators had keyed in on foreshocks and other isolated seismic events. The Los Alamos result suggested that everyone had been looking in the wrong place — that the key to prediction lay instead in the more subtle information broadcast during the relatively calm periods between the big seismic events.

To be sure, sliding blocks don’t begin to capture the chemical, thermal and morphological complexity of true geological faults. To show that machine learning could predict real earthquakes, Johnson needed to test it out on a real fault. What better place to do that, he figured, than in the Pacific Northwest?

by Ashley Smart, Quanta Magazine |  Read more:
Image: Race Jones, Outlive Creative