Thursday, October 10, 2019

The Dawn of the Age of Geoengineering

Let’s be honest. The world’s governments might not coordinate to stop climate change.

Between bickering over which country is paying the bill, the fact that the major costs of climate change are decades away, and countless more urgent political problems caused by the sudden surge of populism around the world, it’s possible sensible policies like carbon taxes won’t be fully adopted in time.

Fortunately, technology and entrepreneurship are contributing solutions. Solar and wind energy is plummeting in price. Transport is electrifying because it turns out electric cars are simply better than conventional ones.

But also, there is still a chunk of humanity with the determination, audacity, and ingenuity to succeed on a massive scale where political coordination has so far failed. Meet the geoengineers.

Here are four of my favorite large-scale projects to improve Earth’s environment.

Pleistocene Park

I’ve been following the effort to bring Mammoths back to Siberia since 2017 when I read Ross Andersen’s spellbinding feature on the subject in The Atlantic (highly suggested).

The core idea is delightfully counterintuitive: Siberia has too many trees. In ages past, Siberia used to be grassland, and today it is mostly forest. Although trees can sequester carbon in their trunks and branches (at least until they burn or decompose), Siberian forests have significant drawbacks with respect to climate change.

First, forests don’t reflect a lot of solar radiation. A treeless, grassy Siberia would increase Earth’s albedo, reflecting more solar energy back into space. Forests absorb more solar radiation and put it into the ground as heat.

Second, forests are poor habitats for snow-trampling herd animals. In the winter, a thick layer of snow acts as an insulator on the permafrost, preventing frigid above-ground temperatures from reaching deep into the Earth’s crust, where they can shore up the frozenness of the permafrost. When large herds of grazing animals trample the snow, its insulating properties are reduced and the permafrost can hard freeze. Forests reduce these snow-trampling grazing populations.

These effects matter because Arctic permafrost is potentially a carbon bomb. Legions of microbes lay in suspended animation in the frozen soil. If the temperature of the soil rises only 3 more degrees (C), the microbes will come to life, eat, reproduce, and start generating carbon emissions. Arctic permafrost contains more carbon than all the planet’s forests and the atmosphere combined. Thawing permafrost could therefore be a tipping point, leading to significantly more carbon in the atmosphere and a runaway warming scenario. An increase in albedo from converting the terrain to steppe would mean that the Siberian permafrost would absorb less heat, allowing it to stay frozen longer. And the trampled snow from the return of herding animals would allow Siberia’s frigid winter air to keep the permafrost deep-frozen.

So how do we convert Siberia to grassland? Nikita Zimov is already doing it. He is director of Pleistocene Park, a 144 km² grassy Siberian reserve founded by his father, gonzo scientist Sergey Zimov. The Zimovs have spent the past two decades ripping up trees and reintroducing grazing herds, including bison, moose, wild horses, yaks, and reindeer.

The plan is working. Nikita Zimov says the permafrost, which is at around –3º outside the park, is 17º colder (!) inside the park. The question then, is how to expand the park as efficiently as possible.

Here’s where the project gets really audacious: the plan is to bring back woolly mammoths. Like much other megafauna, mammoths died out around 10,000 years ago, hunted to extinction by our human ancestors. Mammoths provided the Pleistocene with the valuable services of grazing, trampling snow and moving it around to get to the grass below, and uprooting trees. Nothing will make a mammoth happier, it is thought, than ripping a tree out of the icy ground, just as modern elephants enjoy doing the same in the warmer ground of Africa. Based on everything we know, mammoths were a critical part of the Siberian Steppe ecosystem, and their extinction at human hands is what caused the forests to take hold.

To bring back woolly mammoths, we don’t need mammoth DNA perfectly preserved in amber as in Jurassic Park. Instead, geneticists are starting from mammoths’ closest living relative, the Asian elephant, and adding genes that provide traits that could help them to survive in cold climates. If we give Asian elephants a nice layer of subcutaneous fat, a thicker coat of hair, smaller ears (so that the extremities don’t freeze), and some hemoglobin adapted for the cold, that may be enough to allow them to survive in the cold, Siberian winter. Modify perhaps as few as 50 genes. From there, it is thought, evolution will resume and make them more mammoth-like.

This genetic work is going on at the Wyss Institute at Harvard, led by ubiquitous geneticist George Church. There, scientists are identifying genes that could aid winter survival of Asian elephants, CRISPRing them into living elephant fibroblasts, and reprogramming the fibroblasts into pluripotent stem cells. These stem cells, with luck, will be used to produce new “mammoth” embryos. Once enough likely-to-survive mammoth-like elephants are incubated (artificially, because Asian elephants are endangered) to form a herd, they can be released into Pleistocene Park to help transform, maintain, and expand it—and, over a few generations, to transform themselves into better mammoths.

by Eli Dourado |  Read more: