The ark, or gene bank, would be safely hidden in these hollowed-out tunnels and caves sculpted by lava more than 3 billion years ago and would be powered by solar panels above. It would hold the cryogenically preserved genetic material of all 6.7 million known species of plants, animals and fungi on Earth, which would require at least 250 rocket launches to transport to the moon, according to the researchers.
Scientists believe the endeavor could safeguard our planet's wildlife against both natural and human-caused apocalyptic scenarios, such as a supervolcano eruption or a nuclear war, and ensure the survival of their genes.
The scientists presented their lunar ark plans on Sunday (March 7) at the IEEE Aerospace Conference, which was held virtually this year due the COVID-19 pandemic.
"There's this strong interconnectedness between us and nature," lead author Jekan Thanga, head of the Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory at the University of Arizona, told Live Science. "We have a responsibility to be guardians of biodiversity and the means to preserve it."
Not all the technology needed for this ambitious project exists yet, but the researchers think that it could realistically be built within the next 30 years, Thanga said.
Existential threats
The main motivation behind the lunar ark is to create a secure off-world storage facility for biodiversity.
"I like to use the data analogy," Thanga said. "It's like copying your photos and documents from your computer onto a separate hard drive, so you have a backup if anything goes wrong."
Therefore, if an apocalyptic event destroyed the natural world or wiped out most of humanity, there would be a chance to "hit a reset button," Thanga said.
In their presentation, the researchers listed the following as potential existential threats to biodiversity on Earth: Supervolcanic eruption, global nuclear war, asteroid impact, pandemic, climate change acceleration, global solar storm and global drought.
"The environment and human civilization are both very fragile," Thanga said. "There are many of these really tragic circumstances that could happen."
Creating genetic back-ups to preserve biodiversity is not a new concept. The Svalbard Global Seed Vault, located within the Arctic Circle in Norway, holds the genetic samples of plant species from around the world and has already been used to reintroduce certain plants back into the wild. However, that vault is still at risk of being destroyed by rising sea levels or an asteroid strike.
Only by storing the genetic information somewhere else in the solar system can we ensure it survives any existential threats to Earth, the researchers said.
Lava tubes
The moon was the obvious choice for an off-world ark for one main reason: It is only a four-day journey from Earth, which means transporting the samples is much easier than taking them to Mars. Building an ark in orbit around Earth is also not secure enough due to the instability of orbit, Thanga said.
However, another benefit of building an ark on the moon is that it can be safely hidden away in lava tubes. These hollowed-out caverns and tunnels under the surface were formed during the moon's fiery infancy, and they have remained untouched ever since. Lava tubes would protect the ark from meteor strikes and DNA-damaging radiation. The lava tubes have also been suggested as excellent places to build lunar cities for a human civilization on the moon as well, as previously reported by Live Science.
by Harry Baker, Live Science | Read more:
Image: Shutterstock
[ed. The post following this one mentions this (the first time I've heard of it). Seems like a great idea (along with DNA sequencing of all stored items).]