There are two paths to the future: silicon, and DNA. Whichever comes first will determine how things play out. The response to the coronavirus pandemic has shown that current structures are doomed to fail against a serious adversary: if we want to have a chance against silicon, we need better people. That is why I think any AI "control" strategy not predicated on transhumanism is unserious.
Our neolithic forefathers could not have divined the metallurgical destiny of their descendants, but today, perhaps for the first time in universal history, we can catch a glimpse of the next paradigm before it arrives. If you point your telescope in exactly the right direction and squint really hard, you can just make out the letters: "YOU'RE FUCKED".
Artificial Intelligence
Nothing human makes it out of the near-future.There are two components to forecasting the emergence of superhuman AI. One is easy to predict: how much computational power we will have. The other is very difficult to predict: how much computational power will be required. Good forecasts are either based on past data, or generalization from theories constructed from past data. Because of their novelty, paradigm shifts are difficult to predict. We're in uncharted waters here. But there are two sources of information we can use: biological intelligence (brains, human or otherwise), and progress in the limited forms of artificial intelligence we have created thus far.
ML progress
GPT-3 forced me to start taking AI concerns seriously. Two features make GPT-3 a scary sign of what's to come: scaling, and meta-learning. Scaling refers to gains in performance from increasing the number of parameters in a model. Here's a chart from the GPT-3 paper:
Meta-learning refers to the ability of a model to learn how to solve novel problems. GPT-3 was trained purely on next-word prediction, but developed a wide array of surprising problem-solving abilities, including translation, programming, arithmetic, literary style transfer, and SAT analogies. Here's another GPT-3 chart:
Put these two together and extrapolate, and it seems like a sufficiently large model trained on a diversity of tasks will eventually be capable of superhuman general reasoning abilities. As gwern puts it:
More concerningly, GPT-3’s scaling curves, unpredicted meta-learning, and success on various anti-AI challenges suggests that in terms of futurology, AI researchers’ forecasts are an emperor sans garments: they have no coherent model of how AI progress happens or why GPT-3 was possible or what specific achievements should cause alarm, where intelligence comes from, and do not learn from any falsified predictions.Still, extrapolating ML performance is problematic because it's inevitably an extrapolation of performance on a particular set of benchmarks. Lukas Finnveden, for example, argues that a model similar to GPT-3 but 100x larger could reach "optimal" performance on the relevant benchmarks. But would optimal performance correspond to an agentic, superhuman, general intelligence? What we're really interested is surprising performances in hard-to-measure domains, long-term planning, etc. So while these benchmarks might be suggestive (especially compared to human performance on the same benchmark), and may offer some useful clues in terms of scaling performance, I don't think we can rely too much on them—the error bars are wide in both directions. (...)
GPT-3 is scary because it’s a magnificently obsolete architecture from early 2018 (used mostly for software engineering convenience as the infrastructure has been debugged), which is small & shallow compared to what’s possible, on tiny data (fits on a laptop), sampled in a dumb way, its benchmark performance sabotaged by bad prompts & data encoding problems (especially arithmetic & commonsense reasoning), and yet, the first version already manifests crazy runtime meta-learning—and the scaling curves still are not bending
How much power will we have?
Compute use has increased by about 10 orders of magnitude in the last 20 years, and that growth has accelerated lately, currently doubling approximately every 3.5 months. A big lesson from the pandemic is that people are bad at reasoning about exponential curves, so let's put it in a different way: training GPT-3 cost approximately 0.000005%5 of world GDP. Go on, count the zeroes. Count the orders of magnitude. Do the math! There is plenty of room for scaling, if it works.
The main constraint is government willingness to fund AI projects. If they take it seriously, we can probably get 6 orders of magnitude just by spending more money. GPT-3 took 3.14e23 FLOPs to train, so if strong AGI can be had for less than 1e30 FLOPs it might happen soon. Realistically any such project would have to start by building fabs to make the chips needed, so even if we started today we're talking 5+ years at the earliest.
Looking into the near future, I'd predict that by 2040 we could squeeze another 1-2 orders of magnitude out of hardware improvements. Beyond that, growth in available compute would slow down to the level of economic growth plus hardware improvements.
Compute use has increased by about 10 orders of magnitude in the last 20 years, and that growth has accelerated lately, currently doubling approximately every 3.5 months. A big lesson from the pandemic is that people are bad at reasoning about exponential curves, so let's put it in a different way: training GPT-3 cost approximately 0.000005%5 of world GDP. Go on, count the zeroes. Count the orders of magnitude. Do the math! There is plenty of room for scaling, if it works.
The main constraint is government willingness to fund AI projects. If they take it seriously, we can probably get 6 orders of magnitude just by spending more money. GPT-3 took 3.14e23 FLOPs to train, so if strong AGI can be had for less than 1e30 FLOPs it might happen soon. Realistically any such project would have to start by building fabs to make the chips needed, so even if we started today we're talking 5+ years at the earliest.
Looking into the near future, I'd predict that by 2040 we could squeeze another 1-2 orders of magnitude out of hardware improvements. Beyond that, growth in available compute would slow down to the level of economic growth plus hardware improvements.
Putting it all together
The best attempt at AGI forecasting I know of is Ajeya Cotra's heroic 4-part 168-page Forecasting TAI with biological anchors. She breaks down the problem into a number of different approaches, then combines the resulting distributions into a single forecast. The resulting distribution is appropriately wide: we're not talking about ±15% but ±15 orders of magnitude. (...)
Metaculus has a couple of questions on AGI, and the answers are quite similar to Cotra's projections. This question is about "human-machine intelligence parity" as judged by three graduate students; the community gives a 54% chance of it happening by 2040. This one is based on the Turing test, the SAT, and a couple of ML benchmarks, and the median prediction is 2038, with an 83% chance of it coming before 2100.(...)
Both extremes should be taken into account: we must prepare for the possibility that AI will arrive very soon, while also tending to our long-term problems in case it takes more than a century.
Human Enhancement
All things change in a dynamic environment. Your effort to remain what you are is what limits you.The second path to the future involves making better humans. Ignoring the AI control question for a moment, better humans would be incredibly valuable to the rest of us purely for the positive externalities of their intelligence: smart people produce benefits for everyone else in the form of greater innovation, faster growth, and better governance. The main constraint to growth is intelligence, and small differences cause large effects: a standard deviation in national averages is the difference between a cutting-edge technological economy and not having reliable water and power. While capitalism has ruthlessly optimized the productivity of everything around us, the single most important input—human labor—has remained stagnant. Unlocking this potential would create unprecedented levels of growth.
Above all, transhumanism might give us a fighting chance against AI. How likely are they to win that fight? I have no idea, but their odds must be better than ours. The pessimistic scenario is that enhanced humans are still limited by numbers and meat, while artificial intelligences are only limited by energy and efficiency, both of which could potentially scale quickly.
The most important thing to understand about the race between DNA and silicon is that there's a long lag to human enhancement. Imagine the best-case scenario in which we start producing enhanced humans today: how long until they start seriously contributing? 20, 25 years? They would not be competing against the AI of today, but against the AI from 20-25 years in the future. Regardless of the method we choose, if superhuman AGI arrives in 2040, it's already too late. If it arrives in 2050, we have a tiny bit of wiggle room.
Let's take a look at our options.
Normal Breeding with Selection for Intelligence (...)
Gene Editing (...)
Cyborgs (...)
Iterated Embryo Selection (...)
Cloning (...)
A Kind of Solution
I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.Let's revisit the AI timelines and compare them to transhumanist timelines.
- If strong AGI can be had for less than 1e30 FLOPs, it's almost certainly happening before 2040—the race is already over.
- If strong AGI requires more than 1e40 FLOPs, people alive today probably won't live to see it, and there's ample time for preparation and human enhancement.
- If it falls within that 1e30-1e40 range (and our forecasts, crude as they are, indicate that's probable) then the race is on.
So how is it actually going to play out? Expecting septuagenarian politicians to anticipate wild technological changes and do something incredibly expensive and unpopular today for a hypothetical benefit that may or may not materialize decades down the line—is simply not realistic. Right now from a government perspective these questions might as well not exist; politicians live in the current paradigm and expect it to continue indefinitely. On the other hand, the Manhattan Project shows us that immediate existential threats have the power to get things moving very quickly. In 1939, Fermi estimated a 10% probability that a nuclear bomb could be built; 6 years later it was being dropped on Japan.
Image: via
[ed. Not a very encouraging prospect. Reminds me of the old Woody Allen quote: “More than any other time in history, mankind faces a crossroads. One path leads to despair and utter hopelessness. The other, to total extinction. Let us pray we have the wisdom to choose correctly.” For more scary predictions, see: Book Review: The Precipice (SSC).]
Terms: GPT-3: an autoregressive language model that uses deep learning to produce human-like text. It is the third-generation language prediction model in the GPT-n series (and the successor to GPT-2) created by OpenAI, a San Francisco-based artificial intelligence research laboratory. AGI: Artificial General Intelligence: hypothetical ability of an intelligent agent to understand or learn any intellectual task that a human being can. It is a primary goal of some artificial intelligence research and a common topic in science fiction and futures studies. AGI can also be referred to as strong AI, full AI, or general intelligent action. FLOPs: floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases it is a more accurate measure than measuring instructions per second. Transhumanism: a philosophical movement, the proponents of which advocate and predict the enhancement of the human condition by developing and making widely available sophisticated technologies able to greatly enhance longevity, mood and cognitive abilities (Wikipedia).