When construction began in 1910, the Elwha Dam was designed to attract economic development to the Olympic Peninsula in Washington, supplying the growing community of Port Angeles with electric power. It was one of the first high-head dams in the region, with water moving more than a hundred yards from the reservoir to the river below. Before the dam was built, the river hosted ten anadromous fish runs. All five species of Pacific salmon — pink, chum, sockeye, Chinook, and coho — were found in the river, along with bull trout and steelhead. In a good year, hundreds of thousands of salmon ascended the Elwha to spawn. But the contractors never finished the promised fish ladders. As a result, the Elwha cut off most of the watershed from the ocean and 90 percent of migratory salmon habitat.
Thousands of dams block the rivers of the world, decimating fish populations and clogging nutrient arteries from sea to mountain spring. Some have fish ladders. Others ship fish across concrete walls. Many act as permanent barriers to migration for thousands of species.
By the 1980s, there was growing concern about the effect of the Elwha on native salmon. Populations had declined by 95 per cent, devastating local wildlife and Indigenous communities. River salmon are essential to the culture and economy of the Lower Elwha Klallam Tribe. In 1986, the tribe filed a motion through the Federal Energy Regulatory Commission to stop the relicensing of the Elwha Dam and the Glines Canyon Dam, an upstream impoundment that was even taller than the Elwha. By blocking salmon migration, the dams violated the 1855 Treaty of Point No Point, in which the Klallam ceded a vast amount of the Olympic Peninsula on the stipulation that they and all their descendants would have “the right of taking fish at usual and accustomed grounds.” The tribe partnered with environmental groups, including the Sierra Club and the Seattle Audubon Society, to pressure local and federal officials to remove the dams. In 1992, Congress passed the Elwha River Ecosystem and Fisheries Restoration Act, which authorized the dismantling of the Elwha and Glines Canyon Dams.
The demolition of the Elwha Dam was the largest dam-removal project in history; it cost $350 million and took about three years. Beginning in September 2011, coffer dams shunted water to one side as the Elwha Dam was decommissioned and destroyed. The Glines Canyon was more challenging. According to Pess, a “glorified jackhammer on a floating barge” was required to dismantle the two-hundred-foot impoundment. The barge didn’t work when the water got low, so new equipment was helicoptered in. By 2014, most of the dam had come down, but rockfall still blocked fish passage. It took another year of moving rocks and concrete before the fish had full access to the river.
The response of the fish was quick, satisfying, and sometimes surprising. Elwha River bull trout, landlocked for more than a century, started swimming back to the ocean. The Chinook salmon in the watershed increased from an average of about two thousand to four thousand. Many of the Chinook were descendants of hatchery fish, Pess told me over dinner at Nerka. “If ninety percent of your population prior to dam removal is from a hatchery, you can’t just assume that a totally natural population will show up right away.” Steelhead trout, which had been down to a few hundred, now numbered more than two thousand.
Within a few years, a larger mix of wild and local hatchery fish had moved back to the Elwha watershed. And the surrounding wildlife responded too. The American dipper, a river bird, fed on salmon eggs and insects infused with the new marine-derived nutrients. Their survival rates went up, and the females who had access to fish became healthier than those without. They started having multiple broods and didn’t have to travel so far for their food, a return, perhaps, to how life was before the dam. A study in nearby British Columbia showed that songbird abundance and diversity increased with the number of salmon. They weren’t eating the fish — in fact, they weren’t even present during salmon migration. But they were benefiting from the increase in insects and other invertebrates.
Just as exciting, the removal of the dams rekindled migratory patterns that had gone dormant. Pacific lamprey started traveling up the river to breed. Bull trout that had spent generations in the reservoir above the dam began migrating out to sea. Rainbow trout swam up and down the river for the first time in decades. Over the years, the river started to look almost natural as the sediments that had built up behind the dams washed downstream.
"In early 2024, operators will open the floodgates on the 49-meter-high dam that blocks the Klamath River, allowing the more than 50 million tons of water it impounds to begin to drain. Once it’s gone, heavy equipment will dismantle the structure. All that will remain of the 11-kilometer-long reservoir that filled the valley for 60 years will be steep-sided slopes coated in gray mud, split once again by a free-flowing river."
Thousands of dams block the rivers of the world, decimating fish populations and clogging nutrient arteries from sea to mountain spring. Some have fish ladders. Others ship fish across concrete walls. Many act as permanent barriers to migration for thousands of species.
By the 1980s, there was growing concern about the effect of the Elwha on native salmon. Populations had declined by 95 per cent, devastating local wildlife and Indigenous communities. River salmon are essential to the culture and economy of the Lower Elwha Klallam Tribe. In 1986, the tribe filed a motion through the Federal Energy Regulatory Commission to stop the relicensing of the Elwha Dam and the Glines Canyon Dam, an upstream impoundment that was even taller than the Elwha. By blocking salmon migration, the dams violated the 1855 Treaty of Point No Point, in which the Klallam ceded a vast amount of the Olympic Peninsula on the stipulation that they and all their descendants would have “the right of taking fish at usual and accustomed grounds.” The tribe partnered with environmental groups, including the Sierra Club and the Seattle Audubon Society, to pressure local and federal officials to remove the dams. In 1992, Congress passed the Elwha River Ecosystem and Fisheries Restoration Act, which authorized the dismantling of the Elwha and Glines Canyon Dams.
The demolition of the Elwha Dam was the largest dam-removal project in history; it cost $350 million and took about three years. Beginning in September 2011, coffer dams shunted water to one side as the Elwha Dam was decommissioned and destroyed. The Glines Canyon was more challenging. According to Pess, a “glorified jackhammer on a floating barge” was required to dismantle the two-hundred-foot impoundment. The barge didn’t work when the water got low, so new equipment was helicoptered in. By 2014, most of the dam had come down, but rockfall still blocked fish passage. It took another year of moving rocks and concrete before the fish had full access to the river.
The response of the fish was quick, satisfying, and sometimes surprising. Elwha River bull trout, landlocked for more than a century, started swimming back to the ocean. The Chinook salmon in the watershed increased from an average of about two thousand to four thousand. Many of the Chinook were descendants of hatchery fish, Pess told me over dinner at Nerka. “If ninety percent of your population prior to dam removal is from a hatchery, you can’t just assume that a totally natural population will show up right away.” Steelhead trout, which had been down to a few hundred, now numbered more than two thousand.
Within a few years, a larger mix of wild and local hatchery fish had moved back to the Elwha watershed. And the surrounding wildlife responded too. The American dipper, a river bird, fed on salmon eggs and insects infused with the new marine-derived nutrients. Their survival rates went up, and the females who had access to fish became healthier than those without. They started having multiple broods and didn’t have to travel so far for their food, a return, perhaps, to how life was before the dam. A study in nearby British Columbia showed that songbird abundance and diversity increased with the number of salmon. They weren’t eating the fish — in fact, they weren’t even present during salmon migration. But they were benefiting from the increase in insects and other invertebrates.
Just as exciting, the removal of the dams rekindled migratory patterns that had gone dormant. Pacific lamprey started traveling up the river to breed. Bull trout that had spent generations in the reservoir above the dam began migrating out to sea. Rainbow trout swam up and down the river for the first time in decades. Over the years, the river started to look almost natural as the sediments that had built up behind the dams washed downstream.
by Andrew Tarantola, Endgadget | Read more:
Image: Hatchette Books
[ed. Long, long overdue, here and elsewhere. An artifact of competition between the Bureau of Reclamation and Corps of Engineers over land development and water policy in the western United States during the post-Depression era, when over 250,000 dams were contructed (as described in the excellent Cadillac Desert). Next on deck: Klamath River (Iron Gate Reservoir). See: After the Flood (Science):]
[ed. Long, long overdue, here and elsewhere. An artifact of competition between the Bureau of Reclamation and Corps of Engineers over land development and water policy in the western United States during the post-Depression era, when over 250,000 dams were contructed (as described in the excellent Cadillac Desert). Next on deck: Klamath River (Iron Gate Reservoir). See: After the Flood (Science):]
"In early 2024, operators will open the floodgates on the 49-meter-high dam that blocks the Klamath River, allowing the more than 50 million tons of water it impounds to begin to drain. Once it’s gone, heavy equipment will dismantle the structure. All that will remain of the 11-kilometer-long reservoir that filled the valley for 60 years will be steep-sided slopes coated in gray mud, split once again by a free-flowing river."